
1 Using OpenMP for Intranode Parallelism – Useful Info rmation
Bronis R. de Supinski

Thanks to: Tim Mattson (Intel), Ruud van der Pas (Oracle),

Christian Terboven (RWTH Aachen University), Michael Klemm (Intel)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Using OpenMP for

Intranode Parallelism

Useful Information

Bronis R. de Supinski

Paul Petersen

2

Outline

• Scheduling loop iterations
• Nested Computation
• Arbitrary Tasks
• NUMA Optimizations
• Memory Model

3

Scheduling loop iterations

• OpenMP provides different algorithms for assigning loop
iterations to threads

• This is specified via the schedule() clause of the worksharing
construct

!$omp do schedule(static)
do i=1,n

a(i) =
end do

#pragma omp for \
schedule(static)
for (i = 0; i < N; ++i)

a[i] =

4

Loop worksharing constructs:
The schedule clause

• The schedule clause affects how loop iterations are mapped onto threads
– schedule(static[,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread

– Pre-determined and predictable by the programmer

– When chunk=1 you get round-robin (or cyclic) scheduling
– schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled

– schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds

– schedule(runtime)

– Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library)

– schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any of the
above)

5

Loops (cont.)

• Use schedule(runtime) for more flexibility
– allow implementations to implement their own schedule kinds
– can get/set it with library routines

omp_set_schedule()
omp_get_schedule()

• Schedule kind auto gives full freedom to the runtime to
determine the scheduling of iterations to threads.

• NOTE: C++ random access iterators are allowed as loop
control variables in parallel loops

Choosing the “right” schedule clause

• The goal of loop scheduling is to balance the work
assigned to each thread in the team

• Many factors interact, so sometime experimentation is
necessary

• Triangular loop nests usually are better with (static,N) or
(dynamic,N) rather than (static)

• It may help to arrange your loop so the iterations with the
largest execution time are assigned first

6

7

Barrier: Necessary across adjacent loops?

• OpenMP guarantees that this works … i.e. that the same
schedule is used in the two loops

• You must ensure that all data accesses to the same location
are aligned to the same iteration

!$omp do schedule(static)
do i=1,n

a(i) =
end do
!$omp end do nowait
!$omp do schedule(static)
do i=1,n
.... = a(i)

end do

#pragma omp for \
schedule(static) nowait
for (i = 0; i < N; ++i)

a[i] =

#pragma omp for \
schedule(static)
for (i = 0; i < N; ++i)

.... = a[i]

8

Outline

• Scheduling loop iterations
• Nested Computation
• Arbitrary Tasks
• NUMA Optimizations
• Memory Model

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {
.....

}
}

9

Nested loops

• Will form a single loop of length NxM and then parallelize
that.

• Useful if N is O(no. of threads) so parallelizing the outer loop
may complicate balancing the load.

Number of loops
to be
parallelized,
counting from
the outside

Number of loops
to be
parallelized,
counting from
the outside

� For perfectly nested rectangular loops we can paral lelize
multiple loops in the nest with the collapse clause :

� Allows parallel regions to be contained in each other

� Often done dynamically by having parallel regions in different
functions

� Total number of threads created is the *product* of the
number of threads in the teams at each level

� Requires: OMP_NESTED=true or omp_set_nested(1)
otherwise the inner parallel region will be executed by a team
of one thread (may happen anyway)

� Use omp_set_num_thread(n) or the num_threads() clause
� Multiple levels of nesting team sizes can be defined via the

OMP_NUM_THREADS environment variable
�setenv OMP_NUM_THREADS 4,2

Nested parallelism

� The OpenMP runtime organizes threads in a pool.

Nested parallelism
(illustrated)

P0

P0 P1 P2 P3

P0 P1 P2 P3P4 P5 P6 P7

P0 P1 P2 P3

P0 P1 P2 P3P7 P4 P5 P6

Threads on Processor Cores

tim
e

Memory

0 1

Memory

2 3

Memory

7 6

Memory

5 4

New features in 4.0
support mapping
threads to cores

12

Outline

• Scheduling loop iterations
• Nested Computation
• Arbitrary Tasks
• NUMA Optimizations
• Memory Model

Arbitrary tasks

• Counted loops are often a natural means of organizing the
computation in a program

• But sometimes you need the ability to partition arbitrary
computation between the threads

• Or you may need the ability to parallelize more than
“counted loops”, such as “while loops” or computations
expressed as “recursive function calls”

13

14

Basic OpenMP:
Sections worksharing construct

• The Sections worksharing construct gives a different
structured block to each thread.

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is an implicit barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

Combining nesting and sections

• Creating nested activity is quite common
–Modular programming creates abstraction

boundaries

• Sections allow arbitrary work units but are
not composable

• Nested parallel regions often cause
unexpected results

15

Tasking in OpenMP combines the best of these two ideas

� Each encountering thread/task creates a new task
�Code and data is being packaged up
�Tasks can be nested

�Into another task directive
�Into a Worksharing construct

� Data scoping clauses:
�shared (list)
�private (list) firstprivate (list)
�default (shared | none)

The OpenMP task construct
C/C++

#pragma omp task [clause]
... structured block ...

Fortran

!$omp task [clause]
... structured block ...
!$omp end task

Tasks have more flexibility

17

void walk_list(node head) {
#pragma omp parallel
{

#pragma omp single
{

node p = head;
while (p) {

#pragma omp task
{

process(p);
}
p = p−>next;

}
}

}
}

� Lets solve Sudoku puzzles with brute multi-core search

(1) Find an empty field

(2) Insert a number

(3) Check Sudoku

(4 a) If invalid:
Delete number,
Insert next number

(4 b) If valid:
Go to next field

Sudoko for lazy computer scientists

� This parallel algorithm finds all valid solutions

(1) Search an empty field

(2) Insert a number

(3) Check Sudoku

(4 a) If invalid:
Delete number,
Insert next number

(4 b) If valid:
Go to next field

Parallel brute -force sudoku (1/3)

#pragma omp task
needs to work on a new
copy of the Sudoku board

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts
the execution of the
algorithm

#pragma omp taskwait
wait for all child tasks

� OpenMP parallel region creates a team of threads
#pragma omp parallel

{

#pragma omp single

solve_parallel(0, 0, sudoku2,false);

} // end omp parallel

�Single construct: One thread enters the execution of
solve_parallel

�the other threads wait at the end of the single …
�… and are ready to pick up threads „from the work queue“

Parallel brute -force sudoku (2/3)

� The actual implementation
for (int i = 1; i <= sudoku->getFieldSize(); i++) {

if (!sudoku->check(x, y, i)) {
#pragma omp task firstprivate(i,x,y,sudoku)
{

// create from copy constructor
CSudokuBoard new_sudoku(*sudoku);
new_sudoku.set(y, x, i);
if (solve_parallel(x+1, y, &new_sudoku)) {

new_sudoku.printBoard();
}

} // end omp task
}

}

#pragma omp taskwait

Parallel brute -force sudoku (3/3)

#pragma omp
taskwait
wait for all child tasks

#pragma omp task
needs to work on a new
copy of the Sudoku
board

Performance evaluation

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

R
un

tim
e

[s
ec

] f
or

 1
6x

16

#threads

Sudoku on 2x Intel® Xeon® E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding

23 Advanced OpenMP Tutorial – TITLE OF YOUR TALK
YOUR NAME

Task Sychronization

� OpenMP barrier (implicit or explicit)
�All tasks created by any thread of the current Team are

guaranteed to be completed at barrier exit

� Task barrier: taskwait

�Encountering Task suspends until child tasks are
complete
�Only child tasks, not their descendants!

barrier and taskwait constructs

C/C++

#pragma omp barrier

C/C++

#pragma omp taskwait

Tasking in Detail

� Managing the data environment is required in OpenMP

� Scoping in OpenMP: Dividing variables in shared and
private:
�private-list and shared-list on parallel region
�private-list and shared-list on worksharing constructs
�General default is shared, firstprivate for tasks.
�Loop control variables on for-constructs are private
�Non-static variables local to parallel regions are private
�private: A new uninitialized instance is created for each thread

�firstprivate: Initialization with Master‘s value / value captured at task
creation

�lastprivate: Value of last loop iteration is written back to master

�Static variables are shared

General OpenMP scoping rules

� Some rules from Parallel Regions apply:
�Static and Global variables are shared
�Automatic Storage (local) variables are private

� If shared scoping is not inherited:
�Orphaned task variables are firstprivate by default!
�Non-Orphaned task variables inherit the shared attribute!
→ Variables are firstprivate unless shared in the

enclosing context

Tasks in OpenMP: Data scoping

Data scoping example (1/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a:

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data scoping example (2/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b:

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data scoping example (3/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c:

// Scope of d:

// Scope of e:

} } }

Data scoping example (4/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d:

// Scope of e:

} } }

Data scoping example (5/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e:

} } }

Data scoping example (6/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Data scoping example (7/7)
int a;

void foo()

{

int b, c;

#pragma omp parallel shared(b)

#pragma omp parallel private(b)

{

int d;

#pragma omp task

{

int e;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

} } }

Hint: Use default(none) to be
forced to think about every
variable if you do not see

clearly.

35 Advanced OpenMP Tutorial – TITLE OF YOUR TALK
YOUR NAME

Task Scheduling and
Dependencies

� Default: Tasks are tied to the thread that first executes
them → not neccessarily the creator. Scheduling
constraints:
�Only the thread to which a task is tied can execute the task
�A task can only be suspended at a task scheduling point

�Task creation, task finish, taskwait , barrier

�If task is not suspended in a barrier, executing thread can only
switch to a direct descendant of all tasks tied to the thread

� Tasks created with the untied clause are never tied
�No scheduling restrictions, e.g. can be suspended at any point
�But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling

� Problem: Because untied tasks may migrate
between threads at any point, thread-centric
constructs can yield unexpected results

� Remember when using untied tasks:
�Avoid threadprivate variable

�Avoid any use of thread-ids (i.e. omp_get_thread_num())
�Be careful with critical region and locks

Unsafe use of untied tasks

� If the expression of an if clause on a task
evaluates to false
�The encountering task is suspended
�The new task is executed immediately

�The parent task resumes when new tasks finishes
→ Used for optimization, e.g., avoid creation of small tasks

If clause

� For recursive problems that perform task decompo-
sition, stop task creation at a certain depth exposes
enough parallelism while reducing overhead.

� Warning: Merging the data environment may have
side-effects

void foo(bool arg)

{

int i = 3;

#pragma omp task final(arg) firstprivate(i)

i++;

printf(“%d\n”, i); // will print 3 or 4 depending on expr

}

final clause

C/C++

#pragma omp task final(expr)

Fortran

!$omp task final(expr)

� The taskyield directive specifies that the current
task can be suspended in favor of execution of a
different task.
�Hint to the runtime for optimization and/or deadlock

prevention

The taskyield directive

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield

#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while(!omp_test_lock(lock)) {

#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

Taskyield example (1/2)

#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{

for(int i = 0; i < n; i++)
#pragma omp task
{

something_useful();
while(!omp_test_lock(lock)) {

#pragma omp taskyield
}
something_critical();
omp_unset_lock(lock);

}
}

Taskyield example (2/2)

The waiting task may be
suspended here and allow the
executing thread to perform
other work. This may also
avoid deadlock situations.

43

Outline

• Scheduling loop iterations
• Nested Computation
• Arbitrary Tasks
• NUMA Optimizations
• Memory Model

� The transparency and ease of use of OpenMP are a
mixed blessing
�Makes things pretty easy
�May mask performance bottlenecks

� In an ideal world, an OpenMP application “just runs
well”. Unfortunately, this is not always the case…

� Two of the more obscure things that can negatively
impact performance are cc-NUMA effects and false
sharing

� Neither of these are caused by OpenMP
�But they most show up because you used OpenMP
�In any case they are important enough to cover here

OpenMP and performance

� In modern computer design memory is divided into
different levels:

� Registers

� Caches

� Main Memory

� Access follows the scheme
�Registers whenever possible
�Then the cache
�At last the main memory

Memory hierarchy

Main Memory

Cache

Registers

CPU

5-20 GB/s

50-100 GB/s

CPU Chip

“DRAM Gap”

� If there are multiple caches not shared by all cores in the
system, the system takes care of the cache coherence.

� Example:
int a[some_number]; //shared by all threads

thread 1: a[0] = 23; thread 2: a[1] = 42;

--- thread + memory synchronization (barrier) ---

thread 1: x = a[1]; thread 2: y = a[0];

�Elements of array a are stored in continuous memory range

�Data is loaded into cache in 64 byte blocks (cache line)
�Both a[0] and a[1] are stored in caches of thread 1 and 2

�After synchronization point all threads need to have the
same view of (shared) main memory

� The system is not able to distinguish between changes
within one individual cache line.

Cache coherence (cc)

� False sharing: Storing data into a shared cache line
invalidates the other copies of that line!

False sharing

Core

memory

Core

on-chip cache

Core Core

on-chip cacheon-chip cache

bus

a[0 – 4]

1: a[0]+=1;2: a[1]+=1; 3: a[2]+=1;4: a[3]+=1;

• Caches are organized in lines of
typically 64 bytes: integer array
a[0-4] fits into one cache line.

• Whenever one element of a
cache line is updated, the whole
cache line is invalidated.

• Local copies of a cache line have
to be re-loaded from main
memory and the computation
may have to be repeated.

� Be alert, if all of these three conditions are met
�Shared data is modified by multiple processors
�Multiple threads operate on the same cache line(s)
�Update occurs simultaneously and very frequently

� Use local data where possible

� Shared read-only data does not lead to false sharing

False sharing indicators

� Serial code: all array elements are allocated in the
memory of the NUMA node containing the core
executing this thread

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform memory

Core

memory

Core

on-chip

cache

Core Core

memory

interconnect

on-chip

cache

on-chip

cache

on-chip

cache

A[0] … A[N]

� First touch w/ parallel code: all array elements are
allocated in the memory of the NUMA node containing
the core that executes the
thread that initializes the
respective partition

double* A;

A = (double*)
malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First touch memory placement

Core

memory

Core

on-chip

cache

Core Core

memory

interconnect

on-chip

cache

on-chip

cache

on-chip

cache

A[0] … A[N/2] A[N/2] … A[N]

� Performance of OpenMP-parallel STREAM vector assignment measured
on 2-socket Intel® Xeon® X5675 („Westmere“) using Intel® Composer
XE 2013 compiler with different thread binding options:

Serial vs. Parallel initialization

0

5000

10000

15000

20000

25000

30000

1 2 4 6 8 12 16 20 24

M
e

m
o

ry
 B

a
n

d
w

id
th

 [
M

B
/s

]

#Threads

STREAM (vector assignment) on 2x Intel Xeon X5675

parallel init., compact binding parallel init., scatter binding

serial init., scatter binding

� Peak Performance is only achievable if everything is
done right (NUMA, Vectorization, FLOPS, …)!

Roofline m odel

53

Outline

• Scheduling loop iterations
• Nested Computation
• Arbitrary Tasks
• NUMA Optimizations
• Memory Model

� All threads have access
to the same, globally
shared memory

� Data in private memory
is only accessible by the
thread that owns this
memory

� No other thread sees
the change(s) in private
memory

� Data transfer is through
shared memory and is
100% transparent to the
application

The OpenMP memory model (1)

55

OpenMP and relaxed consistency

• OpenMP supports a relaxed-consistency shared memory
model.
– Threads can maintain a temporary view of shared memory that is

not consistent with that of other threads.
– These temporary views are made consistent only at certain points in

the program.
– The operation that enforces consistency is called the flush

operation

� Need to get this right
�Part of the learning curve

� Private data is undefined on entry and exit
�Can use firstprivate and lastprivate to address this

� Each thread has its own temporary view on the data
�Applicable to shared data only
�Means different threads may temporarily not see the same

value for the same variable ...

� Let me illustrate the problem we have here…

The OpenMP memory model (2)

� If shared variable X is kept within a register, the
modification may not be made visible to the other
thread(s)

The flush directive (1)

58

The flush directive (2)

• Example of the flush directive, source taken from “Using
OpenMP” pipeline code example

59

Flush operation

• Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory
– All previous read/writes by this thread have completed and are visible

to other threads
– No subsequent read/writes by this thread have occurred
– A flush operation is analogous to a fence in other shared memory

API’s

60

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations,
e.g.
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
– whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master

regions)

61

What is the big deal with flush?

• Compilers routinely reorder instructions implementing a
program
– This helps better exploit the functional units, keep machine busy, hide

memory latencies, etc.

• Compiler generally cannot move instructions:
– past a barrier
– past a flush on all variables

• But it can move them past a flush with a list of variables so
long as those variables are not accessed

• Keeping track of consistency when flushes are used can be
confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different Note: the flush operation does not actually synchronize different
threads. It just ensures that a threadthreads. It just ensures that a threadthreads. It just ensures that a threadthreads. It just ensures that a thread’s values are made s values are made s values are made s values are made
consistent with main memory.consistent with main memory.consistent with main memory.consistent with main memory.

� Strongly recommended: do not use this directive
with a list
�Could give very subtle interactions with compilers
�If you insist on still doing so, be prepared to face the

OpenMP language lawyers
�Necessary much less often with the addition of

sequentially consistent atomics in OpenMP 4.0

� Implied on many constructs
�A good thing
�This is your safety net

� Really, try to avoid at all, if possible!

The flush directive (3)

63

Conclusion
• OpenMP is powerful and flexible APIs that gives you the

control you need to create high-performance applications

• We covered a wide variety of advanced topic exploring the
effective use of OpenMP
– Scheduling loop iterations
– Nested Computation
– Arbitrary Tasks
– NUMA Optimizations
– Memory Model

• Next steps?
– OpenMP is in active evolution to target the latest machine

architectures.
– Start writing parallel code … you can only learn this stuff by writing

lots of code.

